
 1

FPGA Implementation of Stereo Disparity with High
Throughput for Mobility Applications

Carlos Y Villalpando, Arin Morfopolous, Larry Matthies
carlos@jpl.nasa.gov, arin@jpl.nasa.gov, lhm@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Steven Goldberg,
Indelible Systems, Inc, 8921 Quartz Ave, Northridge, CA 91311

indeliblesteve@gmail.com

Abstract—High speed stereo vision can allow unmanned
robotic systems to navigate safely in unstructured terrain,
but the computational cost can exceed the capacity of
typical embedded CPUs. 1 2 In this paper, we describe an
end-do-end stereo computation co-processing system
optimized for fast throughput that has been implemented on
a single Virtex 4 LX160 FPGA. This system is capable of
operating on images from a 1024x768 3CCD (true RGB)
camera pair at 15Hz. Data enters the FPGA directly from
the cameras via Camera Link and is rectified, pre-filtered
and converted into a disparity image all within the FPGA,
incurring no CPU load. Once complete, a rectified image
and the final disparity image are read out over the PCI bus,
for a bandwidth cost of 68MB/sec. Within the FPGA there
are 4 distinct algorithms: Camera Link capture, Bilinear
rectification, Bilateral subtraction pre-filtering and the Sum
of Absolute Difference (SAD) disparity. Each module will
be described in brief along with the data flow and control
logic for the system. The system has been successfully
fielded upon the Carnegie Mellon University’s National
Robotics Engineering Center (NREC) Crusher system
during extensive field trials in 2007 and 2008 and is being
implemented for other surface mobility systems at JPL.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. THE JPL STEREO VISION SYSTEM 1
3. SYSTEM OVERVIEW ... 2
4. RECTIFICATION ACCELERATION..................................... 3
5. FILTERING ACCELERATION ... 4
6. CORRELATION ACCELERATION 5
7. RESULTS ... 7
8. SUMMARY AND DISCUSSION... 9
ACKNOWLEDGEMENTS .. 9
REFERENCES .. 10
BIOGRAPHY .. 10

1. INTRODUCTION

Image processing is becoming an important part of
autonomous robotic behaviors for both terrestrial and space
based rovers. A variety of sensors and applications are used
in order for the robot to navigate and interact with its
surroundings. One such example is a Stereo ranging camera

1978-1-4244-7351-9/11/$26.00 ©2011 IEEE.
2 IEEEAC paper #1162, Version 2, Updated December 23, 2010

system. In this system, a set of images are taken from a
stereo pair of cameras and range information is computed
from the captured images. Real time stereo ranging enables
activities such as autonomous navigation and hazard
avoidance. Currently, real time stereo ranging on large
resolution images on the order of 1024 pixels square
requires desktop class computers, but in many applications,
power, size, and speed of available space qualified and/or
embedded processors are a limiting factor. Flight qualifiable
processor speeds in the gigahertz range are unavailable;
instead, only processors in the low hundreds of megahertz
are space qualified, making real-time stereo processing
impossible for any reasonable image size. Given those
restrictions, the use of Field Programmable Gate Arrays
(FPGA) has become an increasingly attractive technique for
embedded processing. Integrating a sequential processor to
do sequential tasks, and FPGA fabric to do vector and/or
parallel processing enables the low power and high
computation ability required for robotic applications.

In this paper, we will discuss an implementation of a stereo
ranging computation system. This system contains all the
components needed for stereo computation. Most of those
components, including image capture, are placed in the
FPGA, while the final floating point range computation is
placed in the host processor.

2. THE JPL STEREO VISION SYSTEM

Binocular stereo vision is a computationally expensive
algorithm due to the large number of matrix operations. The
current steps involved in the JPL stereo algorithm are: [1]

(1) Digitize the stereo image pair.

(2) Rectify the images

(3) Filter image using a bilateral subtraction filter to
normalize the image pair and highlight features.

(4) Correlate, or measure image similarity by computing
the Sum of Absolute Differences (SAD) for 7x7
windows over a fixed disparity search range.

(5) Estimate disparity by finding the SAD minimum
independently for each pixel.

 2

(6) Filter out bad matches by using the left-right-line-of-
sight (LRLOS) consistency check.

(7) Estimate sub-pixel disparity by fitting parabolas to the
three SAD values surrounding the SAD minimum and
taking the disparity estimate to be the minimum of the
parabola.

(8) Filter out small regions (likely bad matches) by
applying a blob filter that uses a threshold on the
disparity gradient as the connectivity criterion.

(9) Triangulate to produce the X-Y-Z coordinates at each
pixel and transform to the vehicle co-ordinate frame.

Rectification determines a transformation of each image
plane such that pairs of conjugate epipolar lines become
collinear and parallel to one of the image axes.
Rectification reduces the correlation search space to a
simple 1-D line based search. [1]

The image is filtered in order to remove the DC offset of
each image. Filtering maximizes the correlation scores,
producing better matches. If necessary, the image is then
downsampled to the working size.

Correlation is the area based search for matching features
between the two stereo pairs. One of the images in the
stereo pair is defined as the reference image. For each pixel
in the reference image, the other image is searched along the
same scan line to find a match to the reference image. As a
rule of thumb, the search space is chosen to be 10% of the
image width and is called the disparity search space. The
difference in pixel location of the best match between the
stereo pairs is called the disparity for the reference image
pixel. [1]

Current pixel

Disparity Search Space

Left Image
(reference image)

Right Image
(search image)

Current pixel

For a left‐as‐reference image, each pixel in the left image is compared against N disparity
pixels in the right hand image. The search space starts at the same column as the left
pixel column, and moves left. For a right‐as‐reference search, the search space in the left
image also starts in the same column, but moves right.

Figure 1: Disparity search space illustrated

The LRLOS consistency check is a procedure that ensures
that disparities obtained by choosing best matches along the
left camera lines of sight agree with those obtained by
choosing matches along the right camera lines of sight. If,

for a given pixel, the left and right lines of sight do not give
the same disparity, then the match is suspect, and is
discarded. [1]

In this system, steps 1 through 7 are placed in the FPGA,
while steps 8 and 9 are placed in the host processor. Steps 1
through 7 are very suited for FPGA implementation, as they
are invariant and very data parallel. Step 8 currently yields
little parallelization advantage, and step 9 uses floating point
arithmetic, and may not be suitable to an FPGA.

3. SYSTEM OVERVIEW

The JPL stereo vision system currently uses an Alpha Data
ADM-XRC4 development board, which contains a Virtex 4
V4LX160 running at 66 MHz, 6 independent banks of 4MB
Zero Bus Turnaround (ZBT) SSRAM, a PCI bus interface
and a Camera Link interface. The key to the system layout
is to maximize throughput by making each module fully
pipelined, with each module feeding the next as much as
possible. An overall dataflow and block diagram is
illustrated in Figure 2 and is discussed below.

Camera
Link

imager
pair

SRAM
Bank 0

SRAM
Bank
3 & 4

SRAM
Bank
1 & 2

2 channel
Camera Link
Controller

2 channel
RGB

Rectification
Engine

Bilateral
Filter

Bilateral
Filter

Disparity Engine

PCI Interface

Left

Right

Left
Left RGB

Right RGB
Right

Warp Table

Rectified RGBK

Right

Left

Data Flow

Left

Right

Disparity
Output

Figure 2: FPGA block diagram and data flow

There are two phases in the system, each 33ms long: The
first is a pair of image capture modules which feed a pair of
image rectification modules. The second is from rectified
imagery through a pair of bilateral subtraction filters, which
feeds a stereo correlator, which then produces disparity data.

The first phase is armed from a PCI bus register write, and
triggers once the Camera Link module detects a new frame.
The Camera Link cameras run at a 30Hz frame rate, and
take just under 33ms (around 32 ms) to report the entire
image.

Once triggered the raw imagery enters the system from the
two Camera Link cameras and feeds one pixel at a time
directly into each rectification module. The cameras feed 24
bit RGB data to the stereo FPGA system, while the FPGA

 3

modules generate a grayscale image to produce a 32 bit
RGB plus grayscale pixel (RGBK).

The rectification module is a “linear in, random out” system,
meaning that it accepts raw imagery in linearly from the top
left of the image to the bottom right, but produces a rectified
output pixel of random location depending on the
rectification lookup table entry for that input pixel. This
feature means that imagery can be acquired directly from
Camera Link into the rectification module; however, the
rectification module cannot feed the Bilateral Filter directly
without buffering as the pixels would be unpredictably out
of sequence. Therefore, the rectified image is written to an
intermediary SRAM bank to save the warped imagery.

Once rectification is complete and the entire warped image
is available in SRAM, an interrupt is issued over the PCI
bus to signal the start of the next phase.

The host processor will require the use of the left rectified
image color image for other machine vision tasks. In this
system, the right rectified image is not used outside of
Stereo. For efficiency, the left rectified image is read from
SRAM bank 1 and simultaneously fed across the PCI bus to
the host processor while feeding the first bilateral filter. The
right rectified image is fed from Bank 2 in sync with Bank 1
into the second dedicated bilateral filter, and the combined
left/right filtered imagery arrive together downstream at the
stereo disparity module. This sequence is fully pipelined so
that the first disparity pixels will arrive when about 17
rectified lines have been read into the filter. This phase
ends when the disparity module outputs the final disparity
pixel, and then the Camera Link module is re-armed for the
next frame. This phase takes 28 ms, with 5 ms of dead time
until the Camera Link module re-triggers. While the full 32
bit pixel from the rectified image is read by the host
processor, only the grayscale component is fed to the second
phase of the stereo system.

The PCI bus reads the disparity image for the host processor
while the new Capture to warped imagery phase occurs.
The ZBT banks are independent, with the disparity imagery
in Bank 0 and the Rectification using Banks 1/2/3/4. This
improves throughput. The entire disparity image will be
read out in 11ms, 21ms before the last of the warped
imagery is written to SRAM.

4. RECTIFICATION ACCELERATION

Rectification for stereo vision is the process of removing the
distortion that a camera lens and imager system can apply to
the world, and to correct any camera aiming errors so that
pairs of conjugate epipolar lines become collinear and
parallel to one of the image axes. [1] Regardless of the
quality of the lens and imager, there will be some distortion

in the lens that can be eliminated by resampling the original
image to one that would be generated by an ideal pinhole
camera. Additionally, before performing stereo, the images
need to be corrected so that the two images are aligned. No
matter how well mounted the two cameras are they will be
pointed ever so slightly in different directions. This can be
corrected so that a feature in the left image is in exactly the
same row as that same feature in the right image. This
reduces the correlation search to a simple 1-D line based
search.

Calibration images of targets with known geometries are
used to generate a model of the camera’s intrinsic and
extrinsic properties. That model is then used to create a
large lookup table called a rectification table that describes
the mapping from input image, to a final rectified image.
The creation of this rectification table is only done once per
camera set up.

The rectification table describes the projection of a pixel in
the rectified image to a precise location in the raw image.
The neighboring 2x2 pixels to the projected pixel are
weighted according to the distance of the 2x2 pixels to the
projected floating point coordinate, and the weighted pixels
are averaged together to produce the rectified pixel output.

A 2x2 window in the raw image can influence zero, one or
multiple output pixels. Each 2x2 input block of raw
imagery has a rectification table entry which defines the
location of its output pixels as well as the weights needed
for each output pixel.

During run time this rectification table is used to quickly
warp the incoming images to get rid of the lens effects and
to get the two images pointed in the same direction, as
described above.

As illustrated in Figure 2, the rectification module is broken
into 2 independent channels for the left and right images and
operates on true RGB 24-bit pixels.

A single channel consists of a FIFO link to the Camera Link
Capture module, an SRAM port to read rectification table
entries for the incoming pixels, a Control State module, a
multiply-accumulate block to perform the averaging and
weighting, and an independent SRAM port to write warped
pixels out.

The rectified output pixel Pr is computed by from a bilinear
interpolation of the 2x2 source window. The equation used
for the interpolation is defined in Equation 1.[5]

256

)))1(()1)()1((yxdxcyxbxa WWPWPWWPWP

rP
 (1)

Where the 2x2 raw pixels are Pa (top left), Pb (top right), Pc
(bottom left) and Pd (bottom right), Wx is the weight along
the x-axis and Wy is the weight along the y axis. Figure 3
graphically illustrates Equation 1. The dark dot represents

 4

the projected coordinate of the rectified pixel into the raw
image frame.

Pa Pb

Pc Pd

1‐Wy

Wx

1‐Wx

Wy

Output Pixel

Figure 3: Rectification example

Each color channel is independently rectified by its own
rectification module. A grayscale pixel is derived from the
rectified RGB values and is appended to the RGB pixel to
expand the 24 bit input into 32 bit output pixels.

2 Line image
buffer

Camera
Link

imager

Bilinear
interpolation

engine

Rectification
Table SRAM

Rectification
Table Parser

Control and
output
Address
Generator

Output
SRAM

2x2 pixel
block

Rectified
Pixel

B
ili
n
ea
r
w
ei
gh
ts

Rectified
Pixel
Address

Figure 4: Single Channel Rectification Engine block
diagram

5. FILTERING ACCELERATION

The image filtering used in this system is the Bilateral
Subtraction filter. [2][3] The amount of processing required
is prohibitive for real-time applications on general purpose
single CPU computers, and is extremely prohibitive in low
power, embeddable CPUs for mobility applications. We
have implemented this filter as a hardware module in order
to accelerate processing to real-time speeds for large images
and to complete another link in the chain for end-to-end
stereo processing in an FPGA.

We have implemented a bilateral subtraction filter using a
9x9 pixel kernel in Verilog for implementation on a Xilinx
Virtex4 family FPGA. The design has taken advantage of
the ability to do many of the component computations in
parallel with wide datapaths and limited off-chip
communication, and the process is deeply pipelined so that
the images are processed at the same rate the imager outputs
image data. There are three parts to the filter, an image pixel

pipeline with a 9x9 pixel window generator, an array of
processing elements with a divider, and an image smoother
and delay. A general overview is illustrated in Figure 5.

Row Processing Element
Products

Weights

Row Processing Element
Products

Weights

Row Processing Element
Products

Weights

Row Processing Element
Products

Weights

Line Buffer

Line Buffer

Line Buffer

Line Buffer

Pixel In

Adder
Tree

Divider
Sum Weights

Sum ProductsCenter pixel delay
and

3x3 center biased smoother
Subtract

Output

Figure 5: Filter Overview

For the second part of the filter, after the 9x9 window is
extracted, the pixel data is fed to the processing elements.
Each processing element is fed the pixel value for its
position as well as the pixel value for the center pixel. An
absolute difference is taken between those two values and
the result is used as an address into a lookup table. Each
processing element has a lookup table unique for its position
in the window whose contents are the weight coefficients
for the chosen Gaussian function for that position. The
pixel value is then multiplied by the weight and the output
of the processing element is the pair of the product and the
weight selected. The products are fed into an adder tree to
be added as well as the weights and those two sums are fed
into a divider and used generate the bilateral smoothed
image. The basic processing element is illustrated in Figure
6.

ABS
DIFF

Center Pixel

Pixel in

Table
Lookup
Location x,y

Multiplier

W
e

ig
h

t O
u

t

P
ro

du
ct O

ut

ABS
DIFF

Table
Lookup
Location x,y

Multiplier

W
e

ig
h

t O
ut

P
ro

du
ct O

ut

Shift Register

Figure 6: Filter Processing element block diagram

The third part of the filter is the image smoother and delay.
The smoothing function is a simple 3x3 center weighted
average. It is an average of the center pixel and the average
of the surrounding 8 pixels. After the smoothing, the image
is delayed by the processing time required for the bilateral
smoothing. The bilateral filtered image is then subtracted

 5

from the 3x3 smoothed image to produce the output of the
filter as illustrated in Figure 5.

6. CORRELATION ACCELERATION

SAD stereo correlation

The most demanding computations in Stereo come in the
correlation and disparity search functions. This step
involves performing a Sum of Absolute Difference (SAD)
of a 7x7 window in one image against multiple 7x7
windows in the other image for each pixel. For example, for
a 1024x768 image, and searching 10% of the image width,
disparity requires 102 7x7 SAD operations per image pixel.
This presents two tall requirements for a general purpose
CPU, the first is the large number of arithmetic operations
required, and the second is the large amounts of data that
need to be moved in and out of the CPU. An FPGA can do
many of the operations in parallel, and the ability to have
extremely wide data paths limits the number of times the
FPGA needs to go to off-chip memory to read data or to
write intermediate results.

The next step is to find the minimum value of the 102 scores
in both the Left and Right eye line of sights (LRLOS). In a
sequential, non-vector processor, representative of many
embedded processors, all these steps take a large amount of
time to complete.[6]

The hardware is broken up into 3 major parts as illustrated
in Figure 7. They are the score generator, a score delaying
function necessary for LRLOS, and a disparity computer
and checker. The overall hardware architecture emphasizes
parallelism and pipelining in order to complete
computations quickly. Each of these modules is fully
pipelined with a defined latency and an issue rate of one
data value per clock. Thus, the FPGA can produce one
disparity output pixel per clock.

7x7
SAD
Score

Generator

Score
Delay

Integer &
Subpixel
Disparity
computer

Figure 7: Disparity Engine Overview

The SAD Score generator consists of multiple absolute
difference modules in running in parallel. For each stereo
image pixel fed in, the left image pixel is applied against the
102 previous right image pixels. This result is fed to 102
parallel 7 pixel rolling sum calculators, (7RS) which results
in 102 7 column by 1 row SAD scores representing the
partial sum of the disparity search space for that pixel. A
rolling sum of the previous seven values is used in order to
cut down on the need to re-compute absolute differences for

all 7 pixels in the window. This structure is illustrated by
Figure 8.

Shift register as deep as disparity search space

Right Pixel

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

A
B

S
 D

IF
F

7 R
S

Left Pixel

r0 r-1 r-2 r-3 r-5 r-6r-4 r-n-1

L0

SAD0 SAD1 SAD2 SAD3 SAD4 SAD5SAD6 SADn-1

Figure 8: 7 columns by 1 row SAD calculator

The output of the 7x1 SAD is fed into the 7x7 SAD score
generator. The 7x7 SAD score generator operates on a
similar principle as the 7x1 SAD calculator using a 7 value
rolling sum. Instead of using shift registers, the 7x7 SAD
computers use the Xilinx on chip memory primitives to
store the previous seven lines worth of image data. That
image data is fed into another 7x1 SAD calculator to re-
compute the value that should be subtracted from the rolling
sum. This method trades FPGA logic resources for
memory, and reduces the amount of on-chip memory
required over the method of storing the intermediate
products of the 7x1 SAD score generator. 102 values are
done in parallel as illustrated in Figure 9. The result of this
module is a vector of 102 values representing the SAD
scores for all 102 candidate disparities for one pixel.

7x1 Row SAD

Column Sum Memory: N Disparities wide by
image line width deep

COLUMN
ADDRESS

GENERATOR

Write Address

Read Address

N SAD Scores

7x1 Row SAD

7 line pixel delay

P
ix

el
s

In

Figure 9: Seven by Seven SAD score generator

At this stage, we now have enough data to compute the
disparity value for the current pixel; however, there are
certain obstacle edge obscuration artifacts that give either
degraded or false disparity data. We would also like to have
a consistency check to determine if the computed disparity

 6

is valid. In order validate disparity, a check called the
“left/right line of sight test” (LRLOS) test is applied. The
primary disparity path is to check the left image pixel
against 102 right image pixels. To perform the LRLOS
check, the right image pixel is checked against 102 left
image pixels, and the disparity computed from the right-
image-as-reference is compared against the disparity
computed from the left-image-as-reference. In order to
prevent duplicating resources and computation, it is noted
that if the results of the left image disparity computation are
re-arranged, the values of the right image disparity
computation can be obtained as illustrated in Figure 10. The
implementation of the rearranging is a simple delay based
on the corresponding disparity level. The left image score
set is delayed by the latency of the re-arranger to keep left
data synchronized with right data. The data is delayed as
follows. If L(i) and R(i) are the left and right pixel
respectively at position i, and D(x) is the SAD score at
disparity x for pixel L(i), then the score at L(i)D(x) is
equivalent to R(i-x)D(x).

N Shift Registers: N Disparities deep

N Deep

N-1 Deep

N-2 Deep

SAD0

SAD1

SADN

SAD0

SAD1

SAD2

SADn

1 Deep

Left0

Left1

Leftn

Right0

Right1

Right2

Rightn

L/R Score equivalence

L = Left Score
R = Right Score
D = Disparity
i = Current pixel
x = Current disparity

L(i)D(x) = R(i-x)D(x)

Figure 10: L/R Line of Sight Score Delay

We now have two vectors representing the left image SAD
scores and the right image SAD scores. We can now
compute integer and sub-pixel disparities. The left image is
the primary image, and both integer and sub-pixel disparity
will be computed from its data set. The right image is used
only for the LRLOS check, and therefore only integer
disparity is required. In addition to the LRLOS check, there
are additional stereo consistency checks such as a min/max
check and curve check. The overall architecture is
illustrated in Figure 11.

Left as Reference
Scores In Minima Finder

Right as Reference
Scores In Minima Finder

Left SAD Scores

Left Disparity

Right Disparity

R on L
Selector Left SAD Scores Delayed

Left Disparity Delayed

Right Disparity Delayed

L/R LOS Check
And Min/Max
Check

Curve Check

Right Disparity Delayed

Left Disparity Delayed

Left SAD Scores Delayed

M
U

X

NO_DISP Flag

Integer Disparity

Subpixel
Computer

Integer Disparity

Left SAD scores Delayed

Integer Out

Supbixel Out

Figure 11: Integer/Subpixel Disparity Computer

Once we have the score vector for the current pixel, the first
step in computing disparity is to find the minimum value in
the SAD score array. The index of the minimum value will
be the integer portion of the disparity for that pixel. The
value of the minimum score of the left image vector, plus
the score of the next and previous indices will be used to
compute the fractional portion of disparity.

Figure 12 illustrates several stages of the pipelined minima
finder. Each stage is repeated once per disparity searched.
Each step checks the current disparity scores against the
current minimum score. If the current value is smaller, the
current disparity’s index, score, and neighbor’s values are
saved. The same is done for the right image, however only
the minimum value and index are saved, and only the
minimum index value is output.

Current
minimum
scores

Score vector shift register. One level per disparity searched

MIN?

D(x)

D(x+1)

D(x+2)

D(x+3)

D(n)

D(x+1)

D(x+2)

D(x+3)

D(n)

D(x+2)

D(x+3)

D(n)

Current
minimum
scores

MIN?
Current
minimum
scores

MIN?

P
ix

e
l(

t)

P
ix

e
l(

t-
1)

P
ix

e
l(

t-
2)

Figure 12: Minima Finder, repeated once per disparity

After the minimum is found, it is run through the stereo
consistency checks such as minimum/maximum disparity
check, minimum curve check, and LRLOS check. A
maximal or minimal value for disparity is not a valid
disparity, and the difference between the minimum score
and its neighbors must be greater than a certain threshold for
a suitable “curve” to the score vector.

 7

The LRLOS check will compare the integer disparity of the
left and right images, and if they differ by more than 1
index, it will fail the LRLOS check. It is an addressable
Shift register. As disparities from the Right image are fed
in, the address to read from the FIFO is derived from the
current Left image disparity. For example, if the current
left-as-reference disparity is 10, the right-as-reference pixel
10 pixels previous should also have a disparity of 10, plus or
minus 1.

 If any check fails, a no-disparity flag is inserted in place of
the current pixel. After the checks have been performed, the
data then goes to the sub-pixel computation element. The
subpixel computation attempts to fit a quadratic curve to the
minimum score, and its neighboring pixel’s scores. Since
the sub-pixel element requires a signed divide, a pipelined
signed integer divider is used and the integer portion is
added to the result after being delayed by the latency of the
divider. The architecture is illustrated in Figure 13.

Int Disp

Prev

Next

Curv

Shift register. Delays int disp by subpixel computation latency

Numerator

Denominator

Signed Divider
(20 clocks latent)

Int Disp delayed

Sub Disp

Int Disp Delayed shifted 16 bits

No Disp Flag check
(no latency)

M
U

X

NO_DISP

Sub Disp

Integer.sub Pixel disparity

Figure 13: Subpixel Computer

The output of the subpixel computer is a 16 bit fixed-point
word. There are 8 bits for the integer portion of disparity
and 8 bits for the subpixel portion of disparity. At this
point, disparity is complete, and the result is stored in
memory.

SAD5 enhancement

There are certain artifacts in regular stereo correlation that
blur or give false result at the edges of objects. To correct
those effects, a method of combining SAD scores across
multiple overlapping windows to produce the final SAD
score for each pixel’s candidate disparity called SAD5 was
developed.[4] In SAD5, there are 5 scores generated for
each candidate disparity. One score generated for the
primary 7x7 window centered at the original pixel, and 4
more scores generated for the 7x7 windows for each pixel
centered at each corner of the primary window. The lowest
two scores of the 4 corner scores are added to the primary
center score. The resulting score is then passed on to the
disparity computation engine described in the previous

section. To compute SAD5 in the FPGA, it is noted that all
scores required to compute SAD5 are already computed by
the 7x7 score generator described previously. A large shift
register is placed in between the 7x7 SAD score generator
and LRLOS score arranger. It is location in the flow is
illustrated in Figure 14. This shift register is built from
FPGA on-chip memory outputs the scores from the 5
overlapping SAD windows, and from those 5 outputs, a
single output score per disparity is generated. Figure 15
illustrates the SAD5 score generator.

7x7
SAD
Score

Generator

Score Delay

Integer &
Subpixel
Disparity
computer

SAD5 score generator

Figure 14: SAD5 score generator location

6 pixel FIFO 3 line minus 3 pixel FIFO 3 line minus 3 pixel FIFO 6 pixel FIFO

Pipelined
Sort

Delay by sort latency

SAD5n

SADn

Output of sort is two
“best” scores.

Scores will be added
to disparity score of
current pixel.

Figure 15: SAD5 Score generator (repeated once per
disparity)

7. RESULTS

The results of rectification, filtering and correlation have
been independently compared against software equivalent
modules and verified for performance and quality. An
example data set in Figure 16 shows the input data and the
outputs for each module.

F

T
p

T
th
th
la
b
b

T
S
u

(c) Le

Figure 16. Not
the Bilateral

been coloriz

There is a la
performance an

The primary tra
hroughput. Th
he Rectificatio
argely image

by the kernel s
box respectivel

The SAD corr
SAD5 with the
unchanged dep

(a) Raw L

ft Bilateral Sub
(Contrast en

te the slight cu
Subtraction F
zed with black

arge trade spa
nd throughput.

ade is on imag
hroughput scale
on and Bilater
size independ

size of their co
ly.

relation can b
e change of a b
pending on the

Left Image

btraction Filter
nhanced for pri

urve in the raw
Filter has smal
k indicating n

ace between

ge size, FPGA
es linearly with
ral filter the re
ent- they both

omputation, a 2

be implemente
build time flag
build type, bu

r Image
int)

w input image
ll dynamic ran
o disparity, re

disp

resource usag

resource use a
h image size. F
esource usage

h are constrain
2x2 box and 9

ed as SAD1
g. Throughput
ut the SAD5 ca

8

e (a), which is
nge (<30 inten
ed meaning a
parity value.

ge,

and
For

is
ned
9x9

or
t is
ase

uses rou
4000 S

Althoug
reducin
Slices,
correlat
reduced
through
previou

Also n
designe

 (b) R

(d) Di

flattened in th
nsity range pe
small disparit

ughly 4x BRA
lices (exact fig

gh not present
ng BRAM usa
both at the co
tion stage. U
d to 1/5 of pre
hput, and Slic
us use at a cost

not presented h
ed to substitut

Rectified Left I

isparity Image

he rectified im
r byte). The d
ty value and b

AM that of SAD
gures depend o

ted here, there
age and anoth
ost of reduced
Using these m
evious use at a
ces can be re
t of 1/10 of pre

here, a Laplac
te for the Bil

Image

mage (b). Also
disparity imag
blue indicated

D1 and uses an
on image size).

is an optional
her method fo

throughput fo
methods BRA
a cost of 1/2 o
educed at mo
evious throughp

cian Box filter
lateral Subtrac

o note that
ge (d) has
a large

n additional

method of
or reducing
or the SAD

AM can be
of previous
st 1/10 of
put.

r has been
ction filter.

 9

The Laplacian uses roughly 2x the BRAM and 1/5 the
Slices of the Bilateral, at the cost of reduced quality of
filtering results.

The standard build options are as follows:

FPGA Resource usage BRAM3 Slices4
Virtex 4LX160 288 67,584
Virtex 5FX130t 576 40,960
Rectification 2 1,186
Bilateral Subtraction Filter 18 19,893
Correlator@1024 wide
SAD1: 100 28,845
SAD5: 450 35,004
Correlator@512x384
SAD1: 36 13,275
SAD5: 128 17,502
Example Complete Systems:
Rect + Bil + SAD1 @
1024x768 134 49,924
Rect + Bil + SAD5 @
512x384 162 38,581

Throughput in this system is first limited by the Cameralink
system, a fixed 30Hz, and then by the memory resources.
With additional on-board memory the rectification and the
filter steps could be interleaved so that the filter was running
on the previous frame while rectification operates on the
current frame. This would enable full 30Hz timing. The
current system does not have enough room for such
interleaving, and is thus limited to 15Hz at 1024x768.

If the Cameralink system was not used as the source of raw
imagery into the FPGA board, but instead the PCI bus was
used to load imagery in, the timing becomes more complex.
In this case the throughput becomes dependent upon the
image size, the PCI bus speed and the clock rate used on the
FPGA. Our default design was 1024x768 imagery using a
32 bit, 66Mhz PCI bus and a 66 Mhz FPGA clock.

Using a PCI bus to load raw imagery results in an additional
43ms transfer time, resulting in a total frame period of: 43
ms (PCI transfer in) + 12ms (Rectification stand alone) + 28
ms (left rectified image read out over PCI bus and
simultaneously through the filter) = 83 ms, or 12Hz.
Disparity can be read out over the PCI bus while
Rectification runs. Time can be reduced by: increasing the
clock rate of the FPGA, improving the throughput of the
PCI bus (such as by using PCI Express), reducing the image

3
 BRAM is 18Kbit

4
 Slice count is presented in the Virtex 4 Family’s 4 input LUT reference

frame, not the Virtex 5 Family’s 6 input LUT reference frame for a 1-1
comparison

size, using grayscale instead of RGB imagery, or by using
additional memory banks so the rectification and filter steps
can be interleaved.

The maximum FPGA clock rate is 124MHz, which is
constrained in this design by the internal performance of the
SAD5 correlator.

As a comparison of the FPGA implementation to
contemporary processors, the same algorithms for SAD1
implemented in the FPGA were run on a 1024x768 image
pair on an Intel XEON 5160 at 3GHz, and a Core2 Quad
Q6600 at 2.4GHz using the Intel’s SSE2 instruction set for
acceleration. The timing results for the two systems are as
follows:

 XEON 5160
 @3GHz

Core2 QUAD
@ 2.4GHz

Rectification (2
images)

3 ms 6 ms

Bilateral
Subtraction Filter
(2 images)

6947 ms 8734 ms

Disparity 74 ms 87 ms
Total time 7024 ms 8827 ms

8. SUMMARY AND DISCUSSION

This system is able to compute high resolution dense stereo
at real-time rates with low latency in a small, low power
package. A system capable of processing 1024x768 color
images was fielded on an Alpha-Data development board
placed in a small single board computer as a self-contained
end-to-end stereo processor. The system can be tailored for
various image sizes and disparity search ranges at synthesis.

The design of this system was from the beginning tailored to
high speed ground mobility applications, and therefore the
amount of on-chip resources used is commensurate with
heavily parallel, deeply pipelined computation for maximum
throughput. The image passes through each stage only once
before being passed to the next stage. It is possible to reduce
the throughput and save resources by making multiple
processing passes on the image.

The ability to use the maximum amount of resources
enables the computation of fast, high quality dense stereo
disparity, freeing up any host processor for other tasks.

ACKNOWLEDGEMENTS

The work described in this publication was performed at the
Jet Propulsion Laboratory, California Institute of
Technology, under contract from the National Aeronautics
and Space Administration. This work was developed and
matured under various NASA, DARPA, SPAWAR, and
internal R&D programs.

[

[

[

[

[

[

fo
e
E
A
E
in
c
T

a

1] L. H. Ma
Ground Veh
the 7th Inter

2] A. Ansar, A
time Stereo
on 3D Data
(2004)

3] C. Tomasi a
and color im
Vision, pp.

4] H. Hirschm
Correlation-
Errors,” In
47, no. 1-3,

5] Donald B
Cameras in
Camera C
Automatic E
Springer Ve

6] Goldberg,
Vision and
Exploration
2002, vol. 5

for machine v
earned his B
Engineering, C
Austin in 199
Engineering-VL
n 2003. He

continuously s
Technology dev

algorithms on t

REFER

atthies, “Obsta
hicles: A Progr
rnational Symp

A. Castano and
Using Bilatera

a Processing, V

and R. Mandu
mages,” in Pro
836–846, 1998

müller, P. Inno
-Based Stereo
nternational Jou
pp. 229.246, A

. Gennery. C
n Computer V
alibration Inc
Editing of Calib
erlag (A. Gruen

S.B. Maimone
d Rover Navig
n”, Proceedings
5 pp. 5-2025 to

BIOG

Carlos Y. V
of Technic
Computer
group at th
He is curr
advanced
machine vis
well as syst

vision tasks o
Bachelor of S
Computer Block
96 and a Ma
LSI at the Uni
has been a m

since 1993 an
velopment task

Arin Morfop
Robotic Actua
Jet Propulsio
active in
implementatio
half dozen Do
been respons
and integra

those tasks sinc

RENCES

acle Detection
ess Report.” Ro

posium. 475-48

d, L. Matthies
al Filtering.” In
Visualization, a

chi, “Bilateral
oc. IEEE Intl.
8.

ocent, J. Garib
Vision with

urnal of Comp
April-June 2002

Calibration and
Vision, chapter
cluding Lens
bration Points”

n and T. Huang

e, M.W., Matt
gation Softwar
s, IEEE Aerosp
5-2036.

GRAPHY

Villalpando is a
cal staff in

Systems and
he Jet Propuls
rently a digit

computing
sion applicatio
tem designer a

on multicore p
Science degre
k at the Unive
ster of Scienc
iversity of Sou

member of the
nd has worke
ks.

poulos is a
ation and Sens
on Laboratory

the FPGA
on of vision a
oD and NASA p
sible for the s
tion of the
ce 2007.

n for Unmann
obotics Researc
6.

“Enhanced Re
Proc. Intl. Sym

and Transmissi

filtering for gr
Conf. Compu

aldi, “Real-Tim
Reduced Bord

puter Vision, v
2.

d Orientation
r “Least-Squar

Distortion a
”, pages 123–13
g, ed.), 2001.

thies, L, “Ster
re for Planeta
pace Conferen

a Senior Memb
the Advanc

d Technolog
sion Laborato
tal designer f
techniques f

ons in FPGAs
and programm
processors. H
ee in Electric
ersity of Texas
ce in Electric

uthern Californ
JPL commun

ed primarily

member of t
sing Group at t
y. He has be

design a
algorithms on
projects. He h
system interfac

FPGA visi

10

ned
ch,

eal-
mp.
ion

ray
uter

me
der
vol.

of
res

and
36.

reo
ary
ce,

ber
ced
gies

ry.
for
for
as

mer
He
cal
at

cal
nia
nity
on

the
the
een
and
 a

has
ces
ion

he ha
autonom
and is c

Group.
obstacl
of robo
real-tim
detectio
structur
He ha
estimat
from im
multisp
sonar a
researc
sponsor
projects
asteroid
vehicles
a memb
journal
Depart
has als
Engine
Academ
.

Steve
Syste
Adig
Bach
Engi
Sout
an
Sinc

as developed
mous navigati
currently work

Dr. L
in Co
Unive
Propu
curre
Staff

 His research
le avoidance a
otic vehicles. A
me algorithms
on and he co
red light senso

as also devel
tion from imag
mage sequence
pectral imager
and stereo vis
ch projects on
red by NASA,
ts include wo
d and comet

es for urban
ber of the edit
l and an adju
tment at the U
lso been an
eering Sympo
my of Engineer

e Goldberg is
ems in Los A
go AS in No
helors of S
ineering from
thern Californi

undergraduat
e he began con

d real-time
ion. He contin
king on agricul

Larry Matthies
omputer Scienc
ersity in 1989
ulsion Labor

ently a Princip
and superviso

h has focused
algorithms for

At JPL, he pion
s for stereo
ontributed to
or used by the
loped algorith
ge sequences, 3
es, real-time ter
rs, and enviro
sion sensors. H
n computer vis
, DARPA, an
ork on navig

landers, and
 and cross-
torial board of
unct member o
University of S
invited speak

osium organiz
ring

a researcher a
Angeles, Calif
orway. He
Science in
m the Univ
ia in 1999 whe
te research
ntracting at JP
vision algor

nues contractin
ltural robotics

s obtained a Ph
ce from Carneg
9, then moved
ratory, wher
pal Member of
or of the Mach

on terrain se
r autonomous
eered the deve

vision-based
the developm
e Sojourner M
hms for visu
3-D scene reco
rrain classifica

onmental mapp
His group cur
sion for robot
d the U.S. Ar

gation of Ma
Earth-based
country missi

f the Autonomo
of the Comput
Southern Calif

ker at the Fr
ized by the

at Indelible
fornia and

earned a
Computer

versity of
ere he was

assistant.
PL in 1997,
rithms for
ng for JPL
in Europe.

h.D. degree
egie Mellon

to the Jet
re he is
f Technical
hine Vision
ensing and
navigation

elopment of
d obstacle
ent of the

Mars rover.
ual motion
onstruction
ation using
ping using
rrently has
tic vehicles
rmy; these

ars rovers,
robotic

ions. He is
ous Robots
ter Science
ifornia. He
rontiers of

National

 11

